Maximum Entropy Production Is Not a Steady State Attractor for 2D Fluid Convection

نویسندگان

  • Stuart Bartlett
  • Nathaniel Virgo
چکیده

Multiple authors have claimed that the natural convection of a fluid is a process that exhibits maximum entropy production (MEP). However, almost all such investigations were limited to fixed temperature boundary conditions (BCs). It was found that under those conditions, the system tends to maximize its heat flux, and hence it was concluded that the MEP state is a dynamical attractor. However, since entropy production varies with heat flux and difference of inverse temperature, it is essential that any complete investigation of entropy production allows for variations in heat flux and temperature difference. Only then can we legitimately assess whether the MEP state is the most attractive. Our previous work made use of negative feedback BCs to explore this possibility. We found that the steady state of the system was far from the MEP state. For any system, entropy production can only be maximized subject to a finite set of physical and material constraints. In the case of our previous work, it was possible that the adopted set of fluid parameters were constraining the system in such a way that it was entirely prevented from reaching the MEP state. Hence, in the present work, we used a different set of boundary parameters, such that the steady states of the system were in the local vicinity of the MEP state. If MEP was indeed an attractor, relaxing those constraints of our previous work should have caused a discrete perturbation to the surface of steady state heat flux values near the value corresponding to MEP. We found no such perturbation, and hence no discernible attraction to the MEP state. Furthermore, systems with fixed flux BCs actually minimize their entropy production (relative to the alternative stable state, that of pure diffusive heat transport). This leads us to conclude that the principle of MEP is not an accurate indicator of which stable steady state a convective system will adopt. However, for all BCs considered, the quotient of heat flux and temperature difference F/∆T—which is proportional to the dimensionless Nusselt number—does appear to be maximized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimisation of a Free-Energy-Like Potential for Non-Equilibrium Systems at Steady State

This study examines a new formulation of non-equilibrium thermodynamics, which gives a conditional derivation of the “maximum entropy production” (MEP) principle for flow and/or chemical reaction systems at steady state. The analysis uses a dimensionless potential function φst for non-equilibrium systems, analogous to the free energy concept of equilibrium thermodynamics. Spontaneous reductions...

متن کامل

Comments on the Entropy of nonequilibrium Steady States

We discuss the entropy of nonequilibrium steady states. We analyze the so-called spontaneous production of entropy in certain reversible deterministic nonequilibrium system, and its link with the collapse of such systems towards an attractor that is of lower dimension than the dimension of phase space. This means that in the steady state limit, the Gibbs entropy diverges to negative infinity. W...

متن کامل

Minimization of a free-energy-like potential for non-equilibrium flow systems at steady state.

This study examines a new formulation of non-equilibrium thermodynamics, which gives a conditional derivation of the 'maximum entropy production' (MEP) principle for flow and/or chemical reaction systems at steady state. The analysis uses a dimensionless potential function (st) for non-equilibrium systems, analogous to the free energy concept of equilibrium thermodynamics. Spontaneous reduction...

متن کامل

Natural Convection and Entropy Generation in Γ-Shaped Enclosure Using Lattice Boltzmann Method

This work presents a numerical analysis of entropy generation in Γ-Shaped enclosure that was submitted to the natural convection process using a simple thermal lattice Boltzmann method (TLBM) with the Boussinesq approximation.  A 2D thermal lattice Boltzmann method with 9 velocities, D2Q9, is used to solve the thermal flow problem. The simulations are performed at a constant Prandtl number (Pr ...

متن کامل

A Theoretical Study of Steady MHD mixed convection heat transfer flow for a horizontal circular cylinder embedded in a micropolar Casson fluid with thermal radiation

In this study, an investigation is carried out for laminar steady mixed 2D magnetohydrodynamic (MHD) flow of micropolar Casson fluid with thermal radiation over a horizontal circular cylinder with constant surface temperature. In the present study, an investigation is carried out on the effects of physical parameters on Casson fluid non dimensional numbers. The governing nonlinear partial diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2016